Latent Profle Analysis in R (tidyLPA) und MPlus

Faktoren- und Clusteranalysen, Diskriminanzanalysen und weitere multivariate Verfahren aller Art mit SPSS

Latent Profle Analysis in R (tidyLPA) und MPlus

Beitragvon Alien » Di 8. Feb 2022, 21:51

m2 <- dataPCLD1 %>%
impute()%>%
scale()%>%
estimate_profiles(n_profiles = 2,
variances = "equal", covariances = "zero")

Bei der Berechnung der Latent Profile Analysis gibt es also unterschiedliche Ergebnisse in MPlus und in R (tidyLPA) mit denselben Daten. Für 2-Klassen-Lösungen gibt es unterschiedliche Anzahl von Subjekten pro Klasse (z.B. in R: 30/ 51; Mplus: 37/44) und auch unterschiedliche AIC/BIC-Werte. Ich habe auch versucht, mit dem Paket mclust zu rechnen. Trotzdem erhalte ich die gleichen Ergebnisse wie mit tidyLPA.

Weiß jemand, worauf das Problem beruht?

Besten Dank!
Alien
 
Beiträge: 1
Registriert: Di 8. Feb 2022, 21:48
Danke gegeben: 0
Danke bekommen: 0 mal in 0 Post

Zurück zu Multivariate Verfahren

Wer ist online?

Mitglieder in diesem Forum: 0 Mitglieder und 0 Gäste

cron