Moin zusammen,
ich schreibe grade an meiner BA und muss dafür mit einer logistischen Regression arbeiten. Damit komme ich auch soweit gut klar.
Nun ist als Voraussetzung um die lineare Regression rechnen zu können die Linearität des Logits vorgeschrieben.
Das Prüfen habe ich hinbekommen:
a) für jede metrische UV eine neue Variable berechnen in der der ursprüngliche Wert mit dem Logarithmus transformiert wird (UV_ln).
b) dann eine logistische Regression für jeden Faktor mit meiner regulären AV und 1) UV und 2) UV*UV_ln (Interaktion)
Die Interaktion soll dann nicht signifikant sein…ist sie auch bei FAST allen Variablen nicht…
Eine Variable macht leider ärger und ist signifikant - also ist da die Voraussetzung verletzt und es besteht keine Linearität des Logits
Ich habe schon die eine oder andere Idee, wie ich jetzt verfahren könnte, bin mir aber eben nicht 100% sicher.
Meine Stichprobe umfasst 2.479 Datensätze (alle Werte werden einbezogen in die Berechnung - keine fehlenden Werte). Ist das groß genug, sodass man das Signifikantwerden auf die Power schieben kann und eben nicht annehmen muss, dass keine Linearität des Logits besteht? Oder eben groß genug, dass die Voraussetzung "Linearität des Logits" generell ignoriert werden kann? Ich hab online sowas in der Art gelesen, habe aber keine zitierfähige Quelle...wenn das also der Fall sein sollte, dann freue ich mich über einen Hinweis auf die entsprechende zitierfähige Literatur.
Daran hängt es halt grade und ich kann nicht weiterarbeiten bevor ich das Problem gelöst habe...daher würde ich mich über zeitnahe Hilfe freuen. Idealerweise samt zitierfähiger Quelle, sonst kann ich zwar arbeiten aber nicht begründen :/
Liebe Grüße
Anja