Output CATREG (elastic net/ Lasso Regression)

Regressionsmodelle aller Art mit SPSS.

Output CATREG (elastic net/ Lasso Regression)

Beitragvon Josie » Di 21. Apr 2020, 14:30

Hallo,
Ich habe in SPSS ein elastic net model und eine LASSO Regression durchgeführt (jeweils mit Cross validation; transformierung der Variablen über Ränge), habe aber einige Unklarheiten bei der Interpretation des Outputs – wäre für Hinweise bei der einen oder anderen der unten stehenden Fragen sehr dankbar, bin leider selbst kein pro.
Im Übrigen: kann man in SPSS auch das Baysianische Elastic net implementieren?

Output:
–Worauf beruht die Modellzusammenfassung? Als input variable sind hier nämlich mehr angeführt als beim ‘selected model’ einbezogen werden.

– Inwieweit beeinflusst es mein Ergebnis, welche Diskretisierung ich verwende? Habe Ränge benutzt, aber Gruppieren/Multiplizieren gäbe es auch – an welchen Kriterien sollte ich mich zur Auswahl orientieren?
– vielleicht damit zusammenhängend: die df für meine inputs scheinen mir teils sehr niedrig – woran könnte das liegen?

– Elastic net: Warum werden bei manchen modellen Ridge-strafe angeführt, bei anderen nicht (auch nicht: 0)?

Und noch was zu den Graphen:
-Beim Output gibt es verschiedene Elastic net Lasso-Pfade, wobei bei unterschiedlichen Ridge-Strafen die Koeffizienten gegen die Summe der Koeffizienten aufgetragen sind (für verschiedene Variablen). Hier sieht man, dass der Betrag der Koeffizienten bei höheren Ridge-Strafen steigt (und damit die Summe der Koeffizienten)– welche Information liefert mir dieser Plot sonst?
-Graphen zur Variablentransformation bei lasso und elastic net: Quantifikationen gegen Kategorien – welche Information kann ich hieraus ziehen?

Danke & lg!
Josie
 
Beiträge: 1
Registriert: Di 21. Apr 2020, 14:26
Danke gegeben: 0
Danke bekommen: 0 mal in 0 Post

Zurück zu Regressionsmodelle

Wer ist online?

Mitglieder in diesem Forum: 0 Mitglieder und 10 Gäste